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The Landau-Zener formula for the probability that a nonadiabatic transition has taken place is derived without
solving directly the usual second-order differential equation. This is achieved in just a few steps by using
contour integration.

Introduction A= —iH B exyi ftE12 d} )
In 1932, Clarence Zener published the exact solution to a ) ) o
one-dimensional semi-classsical model for nonadiabatic transi- B= —iH,Aexp{—i ['E;,d} 3)

tions! In the model, nuclear motion is treated classically, in . . .
which case, it enters the electronic transition problem as anWhereEiz = E1 — Ex. Further differentiation of, and substitu-
externally controlled parameter. As Landau had formulated and tions petween, eqs 2 and 3 yields the second-order differential
solved the same model independently (albeit in the perturbative equations
limit and with an error of a factor of/8),2 it came to be known

P 2q_
as the LandatZener model. Despite its limitations, it remains A= IE AT H"A=0 (4)
an important example of a nonadiabatic transition. Even in L 2

systems for which accurate calculations are possible, application BHIEB+[HI"B=0 ®)

of the Landaw-Zener model can provide useful “first estimates”
of nonadiabatic transition probabilities. Alternatively, for com-

Frf:si?i)(/) Sr:epn:c?t;zit)ilrirsi:}; offer the only feasible way to obtain each constant, the paramemeis _equal tov I_:lg, wherev is the _
) ) ' . . magnitude of the relative velocity, which is assumed to remain

Figure 1 depicts the model's salient features. It is assumed constant throughout, arfel, = F1 — F». Note thatFs, F», and
that nuclear motion is classical, the slogésand F, of the F1oare all negative for the case shown in Figure 1; consequently,
intersecting diabatic potential curves are each constantiand o = — , |Fyy|. It is difficult to visualize the behavior ok and
the coupling matrix element in the diabatic basis, is constant. B by a cursory inspection of egs 2 and 3. For example, the fact
The assumption thef;, F2, andHj, are each constant takes  thatB — 0 ast — = is obvious on physical grounds, because
into account the fact that, for a diabatic basis, these parametersnteraction ceases dt= o, and B cannot sustain a phase
change over distances (say ap) that are large compared to  oscillation in this limit (i.e., of the form exjpQt), lest it becomes
the interaction region near the crossing point, i.e., the region a quasi-classical wave function. Thus, any phase oscillation that
where nearly all of the transitions take place. In the model, B might have must become immaterial at sufficiently long times.
interaction ceases far from the crossing point because the energ¥Equation 3, however, is less transparent on this point, as it
difference between the diabats exceeds greatly the magnitudecontains an increasingly rapid phase oscillation due td=the
of the coupling matrix element. = qat variation.

In the model, the nuclear dynamics are assumed to be 100% With Ei2 = at, eq 5 becomes
classical. There is no quantum mechanics whatsoever insofar L 2
as the nuclear degree of freedom is concerned. Nuclear motion B+iatB+[H,"B=0 (6)
enters parametrically. In polyatomic molecules, this results in
geometric phase and associated phenomena. Here, it means th
electron dynamics result from the perturbation brought about
by the imposed nuclear motion.

In the diabaticp, » basis, the wave function is given by

Zener introduced the assumptidi, = at, wherea is a
constant. Referring to Figure 1, when the slopesandF, are

é/l\{hich is the equation to be solved. The desired quantity is the
value ofB after all interaction has ceased, i.B;= B(t = ).

An important point is that it is not necessary to fiB¢t) unless

this is needed to obtaiB; . Indeed, we shall obtaiB; directly.

The derivation is concise and does not require sophisticated
mathematics. It is aimed at a broad range of scientists (mainly
P =Agp, exp{—i ft E,d} +Bo¢, exp{—iftEZ dt} (1) experimentalists) who use the Landatener model in their

research.
where the conventioh = 1 has been used ardlandB are

expansion coefficients. Putting into the time-dependent Perturbative Limit

Schralinger equation yields the coupled equations First, let us review the perturbative limit, which the exact
solution must satisfy as a limiting case. We shall enlist this

T Part of the special issue “George W. Flynn Festschrift”. limiting case later on. The — < solution of eq 2 is readily
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d1 w1 In examining eq 6, we see that, approaches infinitytB

remains proportional t®, as the second and third terms must
slope Fi cancel one another. In this regini,varies ast™*, and eq 6
can be approximated by the neglecBofi.e., note thaB varies
ast=2 whenB varies ag™1). The resulting equation, which is
valid ast — o, is

2, 2

¢2. w1 i tB+ |Hy,|°B=0 (10)

Equation 10 indicates that, at long times, the time dependence
of B is due to its phase variation, becausé proportional to
x i. Straightforward integration of eq 10 yields

Figure 1. Diabats ¢, are coupled byH:,. Where interaction is B(t) = By exp{ —i w4, 74 In(t/ty)} (1))
negligible, adiabatg ; are identified with thep, ,, namely, forx < 0,
Y1 = ¢1 andyz = ¢, while for x> 0, 11 = ¢ andyz = ¢1. whereBy andt, are arbitrary beginning values Bfandt, albeit
restricted to the largeregime. This shows the anticipated phase
y o
z=(l+i)x variation. The large- advancement_of the _phas_e becpm_es
Xo insignificant because of the logarithmic behavior. Differentiation
of eq 11 shows tha/B approaches zero @32, in accord with
our neglect oB in obtaining a solution of eq 6 valid fdr— oo.
Thet=2 variation of B/B at larget is used later to show that an
-7ICO x integral vanishes. Alternatively, in the lintit— 0, eq 6 indicates
that B(0)/B(0) is equal to— |H15% This appears later as an
Figure 2. Contour in the complex plane used to integrate Bxp( integration residue.

with a t%/2 givesA = — i Hyp exp{io t¥2}, and withx = Derivation of the t — o Solution

1/2 i i
(a/2)%t, this yields Zener manipulated eq 6 into the form of the Weber equation,

. 12 [t 2 whose asymptotict(— o) solution yieldsB; for an initial
A= ~iHy,[2/0] f—w dx exp(x’) @) conditionB = 1. Despite the fact that this derivation is tedious
] ) ) _and contains a number of steps that are less than transparent, it
The integral is evaluated by following the contour shown in  yemains the standard method of solutfofIn this article, it is

Figure 2. Fromx = 0 tox, on thex-axis, we have d= dx and shown that eq 6 yieldB in just a few steps that involve contour
exp{iz?} = exp{ix’}. For the vertical path starting at= xo integrations, obviating the need to solve the second-order
andy = 0 and ending ax = xp andy = xo, we have d=idy  ifferential equation directly.
and exgiz?} = exp{i(xo + i)} = exp{i(x?® — y) — 2 Xoy}. Dividing eq 6 byB yields an equation that is well behaved
Finally, returning to the origin along the straight line= (1 + with respect tB. In generalB is complex, and its magnitude
) x, we have d = (1 + i) dx and ex§iz’} = exp[~2x%}. As does not go to zero as a functiontdfi the complex-plane It
no pole is enclosed by the path shown in Figure 2, the above gnjy approaches zero as the result of one (or more) of the
contributions yield parameters of the model being assigned an extreme value that

% > . o, is unreglistic within the coqtext of 'Fhe model, e.[dH; 2| — o,
fo dx exp{ix7} = —j;) i dy expli(%’ — Y)) — 2%y} — Multiplying eq 6 by d/t and integrating from- to +oo yields

L 0
(1+1) f,, dxexp{ =2} (8) it fffdg = — M [ th— [ thB(t)/B(t) (12)

In the limit X — oo, the integration ovey vanishes and the . N
right-hand side of eq 8 becomad2 e74/2. Using this witheq '€ Second term in eq 6 has become the logarithmic
7 yieldsAs = Hi, [27/0] V2 e-17/4, This result can also be obtained integration ofB, i.e., the term on the Igﬁ-haqd side of eq 12.
by substituting« = x'+/i, with the Gaussian integral givingr. The fact thatB; appears as an integration limit enables it to be

Thus, the probability that a nonadiabatic transition has taken ©Ptained without first determining(t) and then finding the
place,Pna = 1 — |A2, is given by — oo asymptotic value. Integration of the expression on the left-

hand side of eq 12 yieldst In B; . The integral in the first term

P.=1- 21 w;,1y 9) on the right-hand side of eq 12 givesiz, where a semicircular
path of infinitesimal radiug passes either counterclockwise or
where (withA explicit) w1z = |Hil/A and tq = |Hiol/v|F1g). clockwise around = 0, yielding + iz or — iz, respectively.

The parametetw:, is a characteristic frequency. For example, The choice of sign will be discussed below. Thus, eq 12
atx = 0 (see Figure 1), it is the Rabi frequency with which the becomes

system oscillates between diabats. The paramgt@presents
the duration of the interaction, which we take tolhe where

| is an “interaction length” given byH1,|/|F12].

This result is valid for the limit in which the system evolves
mainly on a single diabat. In this case, the probability that a wherea = —u|F15| has been used, with;, = |H15 andryg =
nonadiabatic transition has taken place is slightly less than unity. [Hyo|/v|F12).

The exact solution of eq 6, when taken to this limit, must yield By closing a contour in the complexplane, the integral in
eq 9, which will be used shortly. eq 13 can be expressed in terms of the 0 residue and a

o Tg o ptedt
In B = +mw,ty — 1 —— B(t)/B(t 13
f e~ i~ . 7 BOBO  (13)

——_—
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large—R semicircle in the limitR — o, whereR = |t|. It is
assumed thaB(t)/B(t), which is well-behaved on the real axis,
is analytic in the complex plane, enabling the residue theorem
to be applied. On the real axisB(t)/B(t) varies as2 ast —

oo, and its higher order time variation can be obtained by
iteration, with the result thaB(t)/B(t) is expressed as a series
of t™" terms, withn = 2, 4, 6, etc. Though the phase Bft)
evolves throughout the interaction, neitHg(t)/B(t) nor B(t)/

B(t) has phase variation (i.e., of the form eXp{), ensuring
convergence. Namely, any exponential dependenceBttat
might have is absent in the ratiBgt)/B(t) andB(t)/B(t). To see
this, note that ifB(t) = g(t) €W, then B(t)/B(t) = g(t)/g(t) +

f(t). Thus, unles$(t) itself has exponential dependence, which
is not the caseB(t)/B(t) has no exponential dependence.
Extension toB(t)/B(t) is trivial.

The fact thaB(t)/B(t) has no exponential dependence enables
us to analytically continue this function into the complex plane
without dealing with exponential growth when becomes
complex andjt| — . Thus, contours are chosen that follow:
(i) the real axis from-Rto —¢; (ii) a semicircle of infinitesimal
radiuse either above or below the real axisij ) the real axis
from +e to +R; and (v) a semicircle of radiuf in either the
upper or lower half plane, the choice being dictated by the
physical situation, as discussed below. The limiRRas> « is
then taken, and the integral in the second term on the right-
hand side of eq 13 is given by

—+co dt .
S TBO/BM =
—i[Hp,? (£270 ) — lim Jido By/B() (14)

where thet = 0 residue,B(0)/B(0), is equal to— |Hi22, and
the fact that = R € on theR semicircle is used to writetd

= i d6. When the closed contour contains 0, ¢ is equal to

1, and whert = 0 lies outside the closed contour, no pole is
enclosed and = 0. Becausd3(t)/B(t) varies ag~2 ast — oo,
the integration ovef vanishes and eq 13 becomes

B; = exp{wq, 74 (7 F 270)} (15)

The signs depend on whether theemicircle is taken in the
counterclockwise (upper sign) or clockwise (lower sign) direc-
tion, as discussed below.

Note that complex time is treated consistently in the integrals
on the right-hand side of eq 12, as theemicircles are taken
in the same direction in each integral. It is significant that powers
of |[Hiz| higher than two are absent in eq 15, as this facilitates
a comparison with the perturbative limit. It remains to choose
the e and R semicircles, which must be done through consid-
eration of the physical situation.

In the limit [H15] — 0, eq 15 must yield the expression for
|Bf|2 given by eq 9, which was derived for this perturbative limit.
For example, referring to eq 15, a clockwissemicircle can
be used with a counterclockwigesemicircle, in which casé
= 0, as indicated in Figure 3. Alternatively, a counterclockwise
€ semicircle can be used with a counterclockwissemicircle.
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Figure 3. The large and small semicircles are denoRdnd ¢,
respectively. Referring to eq 18,= 0 because the pole at the origin
is not enclosed, and the lower signs are taken becausestémaicircle
around the origin is clockwise.

Re

Here,t = 0 is enclosed, and th€ 27 6 term in eq 15 becomes
—2m. In both cases, the expression Bygiven by eq 15, when
taken to the perturbative limjHo] — 0, is in accord with eq
9. Thus, either choice is acceptable, while other contours are
incompatible with the perturbative limit, giving incorrect
exponential arguments in eq 15.

With the contour chosen to be in accord with the perturbative
limit, Pnais given by

F)na = exp{ —27 W12 rd} (16)
wherewi, = |H1ol/h andry = |H12l/v|F12]. As mentioned earlier,
the parametetw;, is the Rabi frequency at the crossing point,
and the parametety is a measure of the duration of the
interaction. Equation 16 is the Landadener formula for the
probability that a nonadiabatic transition has taken place
following traversal through the interaction region.

In closing, it is pointed out that this approach can be extended
to the more general case of nonconstant sldpesnd F, and

velocity v. Namely, eq 12 is written
+oo | Ot B(t
f : ( )} (1; )

o 2 e dt
B _eXp{|H12| S aw T a mg

wherea is no longer constant. For examplegif! = ag™t +

f(t), where ag is constant and(t) is small, the effect of
nonconstanto. is obtained in terms of residues &ft) and

f(t)B(t)/B(t).
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