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The Landau-Zener Formula†

Curt Wittig*
Department of Chemistry, UniVersity of Southern California, Los Angeles, California 90089-0482

ReceiVed: September 24, 2004; In Final Form: March 4, 2005

The Landau-Zener formula for the probability that a nonadiabatic transition has taken place is derived without
solving directly the usual second-order differential equation. This is achieved in just a few steps by using
contour integration.

Introduction

In 1932, Clarence Zener published the exact solution to a
one-dimensional semi-classsical model for nonadiabatic transi-
tions.1 In the model, nuclear motion is treated classically, in
which case, it enters the electronic transition problem as an
externally controlled parameter. As Landau had formulated and
solved the same model independently (albeit in the perturbative
limit and with an error of a factor of 2π),2 it came to be known
as the Landau-Zener model. Despite its limitations, it remains
an important example of a nonadiabatic transition. Even in
systems for which accurate calculations are possible, application
of the Landau-Zener model can provide useful “first estimates”
of nonadiabatic transition probabilities. Alternatively, for com-
plex systems, it may offer the only feasible way to obtain
transition probabilities.

Figure 1 depicts the model’s salient features. It is assumed
that nuclear motion is classical, the slopesF1 and F2 of the
intersecting diabatic potential curves are each constant, andH12,
the coupling matrix element in the diabatic basis, is constant.
The assumption thatF1, F2, and H12 are each constant takes
into account the fact that, for a diabatic basis, these parameters
change over distances (say∼ a0) that are large compared to
the interaction region near the crossing point, i.e., the region
where nearly all of the transitions take place. In the model,
interaction ceases far from the crossing point because the energy
difference between the diabats exceeds greatly the magnitude
of the coupling matrix element.

In the model, the nuclear dynamics are assumed to be 100%
classical. There is no quantum mechanics whatsoever insofar
as the nuclear degree of freedom is concerned. Nuclear motion
enters parametrically. In polyatomic molecules, this results in
geometric phase and associated phenomena. Here, it means that
electron dynamics result from the perturbation brought about
by the imposed nuclear motion.

In the diabaticφ1,2 basis, the wave function is given by

where the conventionp ) 1 has been used andA and B are
expansion coefficients. Puttingψ into the time-dependent
Schrödinger equation yields the coupled equations

whereE12 ) E1 - E2. Further differentiation of, and substitu-
tions between, eqs 2 and 3 yields the second-order differential
equations

Zener introduced the assumptionE12 ) Rt, where R is a
constant. Referring to Figure 1, when the slopesF1 andF2 are
each constant, the parameterR is equal toV F12, whereV is the
magnitude of the relative velocity, which is assumed to remain
constant throughout, andF12 ) F1 - F2. Note thatF1, F2, and
F12 are all negative for the case shown in Figure 1; consequently,
R ) - V |F12|. It is difficult to visualize the behavior ofȦ and
Ḃ by a cursory inspection of eqs 2 and 3. For example, the fact
that Ḃ f 0 ast f ∞ is obvious on physical grounds, because
interaction ceases att ) ∞, and B cannot sustain a phase
oscillation in this limit (i.e., of the form exp(iΩt), lest it becomes
a quasi-classical wave function. Thus, any phase oscillation that
B might have must become immaterial at sufficiently long times.
Equation 3, however, is less transparent on this point, as it
contains an increasingly rapid phase oscillation due to theE12

) Rt variation.
With E12 ) Rt, eq 5 becomes

which is the equation to be solved. The desired quantity is the
value ofB after all interaction has ceased, i.e.,Bf ≡ B(t ) ∞).
An important point is that it is not necessary to findB(t) unless
this is needed to obtainBf . Indeed, we shall obtainBf directly.
The derivation is concise and does not require sophisticated
mathematics. It is aimed at a broad range of scientists (mainly
experimentalists) who use the Landau-Zener model in their
research.

Perturbative Limit

First, let us review the perturbative limit, which the exact
solution must satisfy as a limiting case. We shall enlist this
limiting case later on. Thet f ∞ solution of eq 2 is readily
obtained forB = 1. Using B ) 1 and replacing the integral

† Part of the special issue “George W. Flynn Festschrift”.
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ψ ) A φ1 exp{-i ∫t
E1 dt} + B φ2 exp{-i∫t

E2 dt} (1)

Ȧ ) -iH12B exp{i∫t
E12 dt} (2)

Ḃ ) -iH21A exp{-i∫t
E12 dt} (3)

Ä - iE12Ȧ + |H12|2 A ) 0 (4)

B̈ + iE12Ḃ + |H12|2 B ) 0 (5)

B̈ + iR tḂ + |H12|2 B ) 0 (6)
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with R t2/2 gives Ȧ ) - i H12 exp{iR t2/2}, and with x )
(R/2)1/2 t, this yields

The integral is evaluated by following the contour shown in
Figure 2. Fromx ) 0 to x0 on thex-axis, we have dz ) dx and
exp{iz2} ) exp{ix2}. For the vertical path starting atx ) x0

andy ) 0 and ending atx ) x0 andy ) x0, we have dz ) i dy
and exp{iz2} ) exp{i(x0 + iy)2} ) exp{i(x0

2 - y2) - 2 x0y}.
Finally, returning to the origin along the straight linez ) (1 +
i) x, we have dz ) (1 + i ) dx and exp{iz2} ) exp{-2x2}. As
no pole is enclosed by the path shown in Figure 2, the above
contributions yield

In the limit x0 f ∞, the integration overy vanishes and the
right-hand side of eq 8 becomesπ1/2 eiπ/4/2. Using this with eq
7 yieldsAf ) H12 [2π/R]1/2 e-iπ/4. This result can also be obtained
by substitutingx ) x′xi, with the Gaussian integral givingxπ.
Thus, the probability that a nonadiabatic transition has taken
place,Pna ) 1 - |Af|2, is given by

where (withp explicit) ω12 ≡ |H12|/p and τd ≡ |H12|/V|F12|.
The parameterω12 is a characteristic frequency. For example,
at x ) 0 (see Figure 1), it is the Rabi frequency with which the
system oscillates between diabats. The parameterτd represents
the duration of the interaction, which we take to bel/V, where
l is an “interaction length” given by|H12|/|F12|.

This result is valid for the limit in which the system evolves
mainly on a single diabat. In this case, the probability that a
nonadiabatic transition has taken place is slightly less than unity.
The exact solution of eq 6, when taken to this limit, must yield
eq 9, which will be used shortly.

In examining eq 6, we see that, ast approaches infinity,tḂ
remains proportional toB, as the second and third terms must
cancel one another. In this regime,Ḃ varies ast-1, and eq 6
can be approximated by the neglect ofB̈ (i.e., note thatB̈ varies
as t-2 when Ḃ varies ast-1). The resulting equation, which is
valid ast f ∞, is

Equation 10 indicates that, at long times, the time dependence
of B is due to its phase variation, becauseḂ is proportional to
i. Straightforward integration of eq 10 yields

whereB0 andt0 are arbitrary beginning values ofB andt, albeit
restricted to the large-t regime. This shows the anticipated phase
variation. The large-t advancement of the phase becomes
insignificant because of the logarithmic behavior. Differentiation
of eq 11 shows thatB̈/B approaches zero ast-2, in accord with
our neglect ofB̈ in obtaining a solution of eq 6 valid fort f ∞.
The t-2 variation ofB̈/B at larget is used later to show that an
integral vanishes. Alternatively, in the limitt f 0, eq 6 indicates
that B̈(0)/B(0) is equal to- |H12|2. This appears later as an
integration residue.

Derivation of the t f ∞ Solution

Zener manipulated eq 6 into the form of the Weber equation,
whose asymptotic (t f ∞) solution yieldsBf for an initial
conditionB ) 1. Despite the fact that this derivation is tedious
and contains a number of steps that are less than transparent, it
remains the standard method of solution.3-6 In this article, it is
shown that eq 6 yieldsBf in just a few steps that involve contour
integrations, obviating the need to solve the second-order
differential equation directly.

Dividing eq 6 byB yields an equation that is well behaved
with respect toB. In general,B is complex, and its magnitude
does not go to zero as a function oft in the complext-plane. It
only approaches zero as the result of one (or more) of the
parameters of the model being assigned an extreme value that
is unrealistic within the context of the model, e.g.,|H12| f ∞.
Multiplying eq 6 by dt/t and integrating from-∞ to +∞ yields

The second term in eq 6 has become the logarithmic
integration ofB, i.e., the term on the left-hand side of eq 12.
The fact thatBf appears as an integration limit enables it to be
obtained without first determiningB(t) and then finding thet
f ∞ asymptotic value. Integration of the expression on the left-
hand side of eq 12 yieldsiR ln Bf . The integral in the first term
on the right-hand side of eq 12 gives( iπ, where a semicircular
path of infinitesimal radiusε passes either counterclockwise or
clockwise aroundt ) 0, yielding + iπ or - iπ, respectively.
The choice of sign will be discussed below. Thus, eq 12
becomes

whereR ) -V|F12| has been used, withω12 ) |H12| andτd )
|H12|/V|F12|.

By closing a contour in the complext-plane, the integral in
eq 13 can be expressed in terms of thet ) 0 residue and a

Figure 1. Diabats φ1,2 are coupled byH12. Where interaction is
negligible, adiabatsψ1,2 are identified with theφ1,2, namely, forx , 0,
ψ1 ) φ1 andψ2 ) φ2, while for x . 0, ψ1 ) φ2 andψ2 ) φ1.

Figure 2. Contour in the complex plane used to integrate exp(ix2).

Af ) -iH12[2/R]1/2∫-∞

+∞
dx exp(ix2) (7)

∫0

x0 dx exp{ix2} ) -∫0

x0i dy exp{i(x0
2 - y2) - 2x0y} -

(1 + i )∫x0

0
dx exp{-2x2} (8)

Pna ) 1 - 2π ω12τd (9)

iR tḂ + |H12|2B ) 0 (10)

B(t) ) B0 exp{-i ω12τd ln(t/t0)} (11)

iR ∫1

Bf dB
B

) - |H12|2 ∫-∞

+∞ dt
t

- ∫-∞

+∞ dt
t

B̈(t)/B(t) (12)

ln Bf ) (πω12τd - i
τd

|H12| ∫-∞

+∞ dt
t

B̈(t)/B(t) (13)
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large-R semicircle in the limitR f ∞, whereR ) |t|. It is
assumed thatB̈(t)/B(t), which is well-behaved on the real axis,
is analytic in the complex plane, enabling the residue theorem
to be applied.7 On the real axis,B̈(t)/B(t) varies ast-2 as t f
∞, and its higher order time variation can be obtained by
iteration, with the result thatB̈(t)/B(t) is expressed as a series
of t-n terms, withn ) 2, 4, 6, etc. Though the phase ofB(t)
evolves throughout the interaction, neitherḂ(t)/B(t) nor B̈(t)/
B(t) has phase variation (i.e., of the form exp(iΩt), ensuring
convergence. Namely, any exponential dependence thatB(t)
might have is absent in the ratiosḂ(t)/B(t) andB̈(t)/B(t). To see
this, note that ifB(t) ) g(t) ef(t), then Ḃ(t)/B(t) ) ğ(t)/g(t) +
ḟ(t). Thus, unlessf(t) itself has exponential dependence, which
is not the case,Ḃ(t)/B(t) has no exponential dependence.
Extension toB̈(t)/B(t) is trivial.

The fact thatB̈(t)/B(t) has no exponential dependence enables
us to analytically continue this function into the complex plane
without dealing with exponential growth whent becomes
complex and|t| f ∞. Thus, contours are chosen that follow:
(i) the real axis from-R to -ε; (ii ) a semicircle of infinitesimal
radiusε either above or below the real axis; (iii ) the real axis
from +ε to +R; and (iV) a semicircle of radiusR in either the
upper or lower half plane, the choice being dictated by the
physical situation, as discussed below. The limit asR f ∞ is
then taken, and the integral in the second term on the right-
hand side of eq 13 is given by

where thet ) 0 residue,B̈(0)/B(0), is equal to- |H12|2, and
the fact thatt ) R eiθ on theR semicircle is used to write dt/t
) i dθ. When the closed contour containst ) 0, δ is equal to
1, and whent ) 0 lies outside the closed contour, no pole is
enclosed andδ ) 0. BecauseB̈(t)/B(t) varies ast-2 as t f ∞,
the integration overθ vanishes and eq 13 becomes

The signs depend on whether theε semicircle is taken in the
counterclockwise (upper sign) or clockwise (lower sign) direc-
tion, as discussed below.

Note that complex time is treated consistently in the integrals
on the right-hand side of eq 12, as theε semicircles are taken
in the same direction in each integral. It is significant that powers
of |H12| higher than two are absent in eq 15, as this facilitates
a comparison with the perturbative limit. It remains to choose
the ε andR semicircles, which must be done through consid-
eration of the physical situation.

In the limit |H12| f 0, eq 15 must yield the expression for
|Bf|2 given by eq 9, which was derived for this perturbative limit.
For example, referring to eq 15, a clockwiseε semicircle can
be used with a counterclockwiseR semicircle, in which case,δ
) 0, as indicated in Figure 3. Alternatively, a counterclockwise
ε semicircle can be used with a counterclockwiseR semicircle.

Here,t ) 0 is enclosed, and the- 2π δ term in eq 15 becomes
-2π. In both cases, the expression forBf given by eq 15, when
taken to the perturbative limit|H12| f 0, is in accord with eq
9. Thus, either choice is acceptable, while other contours are
incompatible with the perturbative limit, giving incorrect
exponential arguments in eq 15.

With the contour chosen to be in accord with the perturbative
limit, Pna is given by

whereω12 ≡ |H12|/p andτd ≡ |H12|/V|F12|. As mentioned earlier,
the parameterω12 is the Rabi frequency at the crossing point,
and the parameterτd is a measure of the duration of the
interaction. Equation 16 is the Landau-Zener formula for the
probability that a nonadiabatic transition has taken place
following traversal through the interaction region.

In closing, it is pointed out that this approach can be extended
to the more general case of nonconstant slopesF1 andF2 and
velocity V. Namely, eq 12 is written

whereR is no longer constant. For example, ifR-1 ) R0
-1 +

f(t), where R0 is constant andf(t) is small, the effect of
nonconstantR is obtained in terms of residues off(t) and
f(t)B̈(t)/B(t).
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∫-∞

+∞ dt
t
B̈(t)/B(t) )

-i|H12|2 ((2πδ ) - lim
Rf∞

∫R
i dθ B̈(t)/B(t) (14)

Bf ) exp{ω12 τd ((π - 2πδ)} (15)

Figure 3. The large and small semicircles are denotedR and ε,
respectively. Referring to eq 15,δ ) 0 because the pole at the origin
is not enclosed, and the lower signs are taken because theε semicircle
around the origin is clockwise.

Pna ) exp{-2π ω12 τd} (16)

Bf ) exp{|H12|2 ∫-∞

+∞ i dt
Rt

+ ∫-∞

+∞ i dt
Rt

B̈(t)

B(t)} (17)
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